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A COUNTEREXAMPLE TO CONVERGENCE FOR MULTISCALE

DECOMPOSITIONS

SIMONE REBEGOLDI AND LUCA RONDI

Abstract. We discuss the convergence of the multiscale procedure by Modin,
Nachman and Rondi, Adv. Math. (2019), which extended to inverse problems
the multiscale decomposition of images by Tadmor, Nezzar and Vese, Multi-
scale Model. Simul. (2004). We show that, for the classical multiscale proce-
dure, the multiscale decomposition might fail even for the linear case with a
Banach norm as regularization.
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1. Introduction

Let H be a Hilbert space with scalar product 〈·, ·〉H and norm ‖ · ‖H . Let X
be a Banach space and let Λ : X → H be a bounded linear operator. Let F ⊂ X
be a Banach space. We assume that for any λ > 0 and any Λ̃ ∈ H the following
minimization problem admits a solution

(1.1) min
{

λ‖Λ̃− Λ(u)‖2H + ‖u‖F : u ∈ X
}

.

where ‖ · ‖F is referred to as the regularization.
When X = H = L2(R2), Λ is the identity and F = BV (R2), in its homoge-

neous version, that is, ‖u‖BV (R2) = TV (u), TV denoting the Total Variation, (1.1)
becomes

(1.2) min
{

λ‖Λ̃− u‖2L2(R2) + TV (u) : u ∈ L2(R2)
}

.

which is the classical Rudin-Osher-Fatem model for denoising.
If Λ : L2(R2) → L2(R2) is a blurring operator, for instance Λ(u) = K ∗ u, where

K ∈ L∞(R2) with compact support represents the point-spread function, (1.1)
becomes

(1.3) min
{

λ‖Λ̃− Λ(u)‖2L2(R2) + TV (u) : u ∈ L2(R2)
}

.

which is the corresponding problem for deblurring.
The efficacy of the denoising or deblurring method strongly depends on the choice

of the parameter λ. Tadmor, Nezzar and Vese, in [7] for denoising and in [8] for
deblurring and other imaging applications, proposed to find the correct λ by an
iterative procedure which also induces a multiscale decomposition of the looked-for
original image. Namely, the multiscale procedure is the following. For Λ̃ ∈ H , fixed
positive parameters λn, n ≥ 0, let σ0 = u0 ∈ X solve

(1.4) min
{

λ0‖Λ̃− Λ(u)‖2H + ‖u‖F : u ∈ X
}

.

Then by induction we define σn, n ≥ 1, as follows. Let un be a solution to

(1.5) min
{

λn‖Λ̃− Λ(σn−1 + u)‖2H + ‖u‖F : u ∈ X
}
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and σn = σn−1 + un, that is,

(1.6) σn =
n
∑

j=0

uj for any n ∈ N.

The sequence {σn}n≥0 exists, but it might be not uniquely determined.
Since

(1.7) ‖Λ̃− Λ(σn)‖H ≤ ‖Λ̃− Λ(σn−1)‖H for any n ≥ 1,

there exists

lim
n

‖Λ̃− Λ(σn)‖H ≥ inf
{

‖Λ̃− Λ(σ)‖ : σ ∈ X
}

.

From a theoretical point of view, first we can ask if σn is indeed a minimizing
sequence, that is, if

(1.8) lim
n

‖Λ̃− Λ(σn)‖H = inf
{

‖Λ̃− Λ(σ)‖ : σ ∈ X
}

.

If (1.8) holds, we can ask if σn is converging in X . In fact, if σnk
→ σ∞ in X as

k → +∞, then σ∞ solves the minimization problem

(1.9) min
{

‖Λ̃− Λ(σ)|H : σ ∈ X
}

.

Hence, if (1.8) holds, (1.9) admitting a solution is a necessary condition for the
convergence, maybe up to subsequences, of the sequence σn.

The first convergence result was obtained in [7] for the denoising case. Namely, if

the noisy image Λ̃ belongs to BV (R2) (or to an intermediate space between L2(R2)
and BV (R2)), then we have the following multiscale decomposition

(1.10) Λ̃ = lim
n

σn =

+∞
∑

j=0

uj in L2(Ω).

provided λn goes to +∞ fast enough, for instance when λn = λ02
n for any n ≥ 0.

In [5], the convergence analysis for these multiscale procedures has been extended
to linear or even nonlinear, when Λ is not a linear operator, inverse problems and to
other applications such as image registration. In [5, Theorem 2.1] it was shown that
(1.8) holds under extremely general assumptions, from which in particular it follows

that (1.10) holds even for Λ̃ ∈ L2(R2). The convergence of the sequence σn is much
more difficult to establish. Let us consider the following stronger assumptions.

Assumption 1. We assume that F is dense and compactly immersed in X . More-
over, we assume that

(1.11) ‖·‖F is lower semicontinuous on X, with respect to the convergence in X.

Assumption 2. There exists σ̂ ∈ F such that

‖Λ̃− Λ(σ̂)‖H = min
{

‖Λ̃− Λ(σ)‖H : σ ∈ X
}

.

Under Assumption 1, in [5] a so-called tighter multiscale procedure was developed,
for which (1.8) still holds, see [5, Theorem 2.4]. Moreover, this tighter version has
the advantage that if we further have Assumption 2, then convergence, up to a
subsequence, of σn in X holds true, see [5, Theorem 2.5]. After [5], the multiscale
procedure was further analyzed and extended, see [2, 1, 4].

The question whether, under Assumptions 1 and 2, the tighter multiscale proce-
dure is really needed or the classical one is enough to guarantee convergence of σn

remained open. Here we show through an example that for the classical multiscale
procedure, even in the linear case and under Assumptions 1 and 2, convergence
might fail, indeed we might have that limn ‖σn‖X = +∞. In this simple example,
we have that λn = λ0M

n, for any n ≥ 0, with M large enough (M ≥ 6 would
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suffice). A more involved example with the same underlying idea, extends the re-
sult to any M ≥ 2, see [6, Section 4]. In [6, Section 4] another counterexample is
presented for a linear, although quite strange, blurring operator on the line, that is,
for signals. [6] contains also some positive results, namely that convergence holds
when the regularization is given by the norm of a Hilbert operator.

2. The counterexample

We begin by describing some properties of the minimization problem (1.1).

Remark 2.1. Under Assumption 1, (1.1) admits a solution. In general, if u0 solves
(1.1), then u solves (1.1) if and only if Λ(u − u0) = 0 and ‖u‖F = ‖u0‖F . Thus
uniqueness holds either if Λ is injective on F or F is a strictly convex Banach space.

Let G = F ∗ and let ‖ ·‖∗ be its norm. Let Λ̃ ∈ H and Λ̃∗ be the linear functional

on H associated to Λ̃. We say that Λ̃∗ ◦Λ ∈ G if the functional F ∋ u 7→ 〈Λ̃,Λ(u)〉H
is bounded with respect to the F -norm on u, that is,

(2.1) ‖Λ̃∗ ◦ Λ‖∗ := sup{〈Λ̃,Λ(u)〉H : u ∈ F with ‖u‖F = 1} < +∞.

Using Meyer’s arguments in [3], it is well-known that the following holds.

Proposition 2.2. Let Λ̃ ∈ H and let u0 be a solution to (1.1). Then we have the

following characterizations.

a) u0 is a minimizer if and only if

(2.2) ‖v∗0 ◦ Λ‖∗ ≤ 1

2λ0
and 〈v0,Λ(u0)〉H =

1

2λ0
‖u0‖F ,

where v0 = Λ̃− Λ(u0) and v∗0 is the linear functional on H associated to v0.

b) u0 = 0 if and only if Λ̃∗ ◦ Λ ∈ G and ‖Λ̃∗ ◦ Λ‖∗ ≤ 1

2λ0
.

c) If ‖Λ̃∗ ◦ Λ‖∗ >
1

2λ0
, including when Λ̃ ◦ Λ /∈ G, then (2.2) may be replaced by

(2.3) ‖v∗0 ◦ Λ‖∗ =
1

2λ0
and 〈v0,Λ(u0)〉H =

1

2λ0
‖u0‖F > 0.

We now describe our counterexample. Let X = l1 and H = l2. We consider

F =

{

γ ∈ l1 : ‖γ‖F :=

+∞
∑

n=1

n|γn| < +∞
}

.

We have that Assumption 1 is satisfied. Note that

G =

{

κ : ‖κ‖∗ = sup
n∈N

|κn|
n

< +∞
}

where the duality is given by

〈κ, γ〉 =
+∞
∑

n=1

κnγn for any κ ∈ G and γ ∈ F.

We fix constants M ≥ 2, α0 > 0, c0 > 0, b > 0, 0 < δ < 1. For any n ≥ 0 we let

λn = α0M
n.

For any j ∈ N, let ηj =

√

c0
M j

and µj = −δηj . For any j ≥ 0 and n ≥ 0, let

(2.4) uj =
b

j + 2
ej+2 and σn =

n
∑

j=0

uj .
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We define the linear operator Λ : l1 → l2 as follows

(2.5) Λ(γ) =

+∞
∑

j=1

γjΛ(ej) for any γ ∈ l1,

where

Λ(e1) =

(

+∞
∑

m=2

ηmem

)

+ µ2e2

and for any j ≥ 2

Λ(ej) =
j

b
(ηjej + µjej − µj+1ej+1) .

Lemma 2.3. The operator Λ defined in (2.5) is a bounded linear operator from

X = l1 into H = l2. Moreover, Λ is injective on l1, thus in particular on F .

Proof. It is easy to show that Λ is a bounded linear operator from lp to l2 for
any 1 ≤ p ≤ +∞. We call bj = b/j, j ≥ 2. About injectivity, we claim that
γ̃ = Λ(γ) = 0, that is, γ̃j = 0 for any j ∈ N, if and only if

γj
bj

= −γ1 for any j ≥ 2.

It follows that γ1 = 0, thus γ = 0, otherwise γ = γ1(1,−b/2, . . . ,−b/j, . . .) 6∈ l1.
We prove the claim by induction. We have γ̃1 = 0 and

0 = γ̃2 = (η2 + µ2)γ1 + (η2 + µ2)η2
γ2
b2

,

that is, γ2/b2 = −γ1. Let j ≥ 3 and assume that γj−1/bj−1 = −γ1. Then

0 = γ̃j = ηjγ1 + (ηj + µj)
γj
bj

− µj

γj−1

bj−1

and the proof is concluded. �

We fix Λ̃ = Λ(e1). Hence Assumption 2 is satisfied. In fact, e1 ∈ F and, by the
injectivity of Λ, e1 is the only solution to

0 = ‖Λ̃− Λ(e1)‖H = min{‖|Λ̃− Λ(γ)‖H : γ ∈ l1}.
Nevertheless, we have the following result.

Theorem 2.4. Let M ≥ 1

3− 2
√
2
and α0 > 0. Then there exist suitable constants

c0 > 0, b > 0, 0 < δ < 1 such that the sequence {σn}n≥0 as in (2.4) coincides with

the multiscale sequence {σn}n≥0 given by (1.4), (1.5) and (1.6).

Remark 2.5. By injectivity of Λ and Remark 2.1, the multiscale sequence is
uniquely defined. Since limn ‖σn‖X = +∞, no subsequence of σn converges, de-
spite we are in a linear case and both Assumptions 1 and 2 hold. However, Λ
as a bounded linear operator from l2 to l2 is not injective anymore and actually

σn → σ∞ =
∑

j=2

b

j
ej , where the series is in the l2 sense, and, by the proof of

Lemma 2.3, indeed we have Λ(σ∞) = Λ(e1).

Proof. By Proposition 2.2, it is enough to show that for any n ≥ 0 we have

(2.6) ‖(Λ(e1)− Λ(σn)) ◦ Λ‖∗ ≤ 1

2λn

and

〈Λ(e1)− Λ(σn),Λ(un)〉H =
1

2λn

‖un‖F ,

that is, that (2.2) holds for any n ≥ 0.
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For any n ≥ 0, we call n1 = n+ 2 ≥ 2 and compute

Λ(σn) =

n1
∑

j=2

b

j
Λ(ej) =

(

n1
∑

m=2

ηmem

)

+ µ2e2 − µn1+1en1+1,

therefore

Λ(e1)− Λ(σn) =

(

+∞
∑

m=n1+‘

ηmem

)

+ µn1+1en1+1.

For any j ∈ N and n1 = n+ 2 ≥ 2, we call

Aj,n1
=

1

j
〈Λ(e1)− Λ(σn),Λ(ej)〉H

so that
‖(Λ(e1)− Λ(σn)) ◦ Λ‖∗ = sup

j∈N

|Aj,n1
|.

Condition (2.6), hence Theorem 2.4, is an immediate consequence of the following.

Claim 1. There exist suitable constants c0 > 0, b > 0, 0 < δ < 1 such that for any
n ≥ 0, calling n1 = n+ 2, we have

(2.7) |Aj,n1
| ≤ An1,n1

=
1

2λn

=
1

2α0Mn
=

M2

2α0Mn1

for any j ∈ N.

To prove Claim 1, we begin by computing Aj,n1
. First,

0 < A1,n1
= (ηn1+1 + µn1+1)ηn1+1 +

(

+∞
∑

m=n1+2

η2m

)

≤ c0
Mn1+1

(

M

M − 1

)

.

We have
Aj,n1

= 0 for any 2 ≤ j ≤ n1 − 1.

We have

An1.n1
= −µn1+1(ηn1+1 + µn1+1) =

c0
bMn1+1

δ(1− δ).

In order to have

0 < A1,n1
< An1,n1

=
M2

2α0Mn1

=
M3

2α0Mn1+1

it is enough to choose

b := δ(1 − δ)
M − 1

2M
and c0 :=

bM3

2α0δ(1− δ)
.

We note that b depends on M and δ only, whereas c0 depends on M , α0 and δ only.
We have that

An1+1.n1
=

1

b

(

(ηn1+1 + µn1+1)
2 − µn1+2ηn1+2

)

=
c0

bMn1+1

(

(1− δ)2 +
δ

M

)

and

An1+s.n1
=

1

b
(ηn1+s(ηn1+s + µn1+s)− µn1+s+1ηn1+s+1)

=
c0

bMn1+s

(

(1− δ) +
δ

M

)

≤ c0
bMn1+1

(

(1− δ)

M
+

δ

M2

)

for any s ≥ 2.

We note that
(1− δ)

M
+

δ

M2
≤ (1− δ)2 +

δ

M
if and only if

δ2 − 2

(

1− 1

M
+

1

2M2

)

δ + 1− 1

M
≥ 0
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which is true for any δ ∈ R and any M ≥ 2. Hence, it is enough to show that for
some δ, 0 < δ < 1, we have

(2.8) (1− δ)2 +
δ

M
≤ δ(1− δ), that is, 2δ2 +

(

1

M
− 3

)

δ + 1 ≤ 0.

For

δ :=
3− 1

M

4
,

we have that 0 < δ < 1 and the polynomial in (2.8) is less than or equal to 0 if and
only if

(

3− 1

M

)2

≥ 8, that is, M ≥ 1

3− 2
√
2
.

The proof is concluded. �
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